Login     Signup
   info@zetlantechnologies.com        +91-8680961847

Home   >   Python Data Science


Python is a widely adopted programming language in data science due to its simplicity, extensive libraries, and active community support. It enables data scientists to perform a wide range of tasks, including data analysis, visualization, machine learning, deep learning, image processing, computer vision, and natural language processing (NLP)


Libraries :


Applications :


Course Details

1. Introduction to Python for Data Science

  • Why Python for Data Science?
  • Installing Python & Jupyter Notebook
  • Python Basics:
    • Variables, Data Types, Operators
    • Control Flow (if-else, loops)
    • Functions and Lambda Functions
    • List, Tuple, Dictionary, Set
    • Comprehensions & Iterators

  • Importing Data (CSV, Excel, JSON, SQL)
  • File Handling in Python
  • Introduction to Pandas:
    • Series & DataFrame
    • Data Cleaning & Handling Missing Values
    • Data Transformation & Manipulation
    • Merging & Grouping Data
  • Introduction to NumPy:
    • Arrays & Matrix Operations
    • Indexing & Slicing
    • Broadcasting & Performance Optimization

  • Introduction to Data Visualization
  • Matplotlib:
    • Line, Bar, Scatter, Histogram, Pie Charts
    • Customizing Plots
  • Seaborn:
    • Statistical Data Visualization
    • Heatmaps, Pairplots, Boxplots, Violin Plots
  • Plotly & Dash (Optional)

  • Understanding Data Distributions
  • Detecting Outliers & Anomalies
  • Feature Engineering Basics
  • Correlation & Feature Selection
  • Handling Categorical Data

  • Descriptive Statistics
  • Probability Distributions
  • Hypothesis Testing
  • Confidence Intervals
  • t-tests, ANOVA, Chi-square Tests

  • Introduction to Machine Learning
  • Supervised vs Unsupervised Learning
  • Regression Models:
    • Linear Regression
    • Polynomial Regression
    • Ridge & Lasso Regression
  • Classification Models:
    • Logistic Regression
    • Decision Trees & Random Forest
    • Support Vector Machine (SVM)
    • K-Nearest Neighbors (KNN)
  • Unsupervised Learning:
    • K-Means Clustering
    • Hierarchical Clustering
    • Principal Component Analysis (PCA)

  • Feature Engineering & Feature Selection
  • Model Evaluation Metrics
  • Hyperparameter Tuning (GridSearchCV, RandomizedSearchCV)
  • Handling Imbalanced Data
  • Introduction to Natural Language Processing (NLP)
  • Time Series Analysis (ARIMA, LSTM)

  • Introduction to Neural Networks
  • Building Deep Learning Models
  • Convolutional Neural Networks (CNNs)
  • Recurrent Neural Networks (RNNs)

  • Working with Large Datasets (Dask, PySpark)
  • Model Deployment using Flask, FastAPI
  • Streamlit for Interactive Data Apps


Fees Structure : 15500 INR / 180 USD
Total No of Class : 45 Video Class
Class Duration : 39:00 Working Hours
Download Feature : Download Avalable
Technical Support : Call / Whatsapp : +91 8680961847
Working Hours : Monday to Firday 9 AM to 6 PM
Payment Mode : Credit Card / Debit Card / NetBanking / Wallet (Gpay/Phonepay/Paytm/WhatsApp Pay)

Brochure       Buy Now       Sample Demo

Fees Structure : 22000 INR / 255 USD
Class Duration : 40 Days
Class Recording : Live Class Recording available
Class Time : Monday to Firday 1.5 hours per day / Weekend 3 Hours per day
Technical Support : Call / Whatsapp : +91 8680961847
Working Hours : Monday to Firday 9 AM to 6 PM
Payment Mode : Credit Card / Debit Card / NetBanking / Wallet (Gpay/Phonepay/Paytm/WhatsApp Pay)

Download Brochure       Pay Online